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We propose a mathematical treatment of the activated processes governed by stochastic Langevin dynamics
with a colored random force, corresponding to a noise generated by an Ornstein-Uhlenbeck process. Such
non-Markovian dynamics take place in a variety of chemical and biological systems. Using the path integral
approach, we constructed the conditional probability for passing between two stationary states in configurational
space. Our relations can be used for Monte Carlo sampling of evolution trajectories for systems with many
degrees of freedom as well as for determining the reaction coordinate used in transition state theory. On the
basis of our relation for a conditional probability, we generalize the method of determining the most probable
path to the case of colored random force. Using the simple three-hole potential, we examine numerically the
effect of nonzero correlation time (memory) on the evolution of the most probable path for a finite temperature.

I. Introduction

Although the methodology of chemical reactions in the gas
phase is rather well developed, similar processes in condensed
phases are still under earlier stages of investigation.1 There are
several proposed approaches to the description of various
activation processes in such complex systems. However, there
is still no single approach applicable to every kind of reaction.
One of the main restrictions comes from our numerical abilities.
Some molecular processes in chemistry and biology occur on
time scales that range from femtoseconds to minutes and more.
There have been several attempts to develop the methodology
that enables studies of biochemical phenomena not accessible
to molecular dynamics simulations.2-5

Another reason for computational difficulties comes from the
fact that most transitions are rare events. Conventional methods
for studying rare events in condensed phases are based on
transition state theory.6-9 When a typical activation process
occurs, many degrees of freedom will generally contribute to
transport the system from one stable region to another, crossing
a dynamical bottleneck called a transition state. The latter is
usually defined as the saddle point that the system has to pass
in order for the reaction to occur.10-12 Indeed, while determining
minima of potential energy surfaces is relatively easy, locating
transition states, which are first-order maxima on the potential
energy surface, is much more difficult. Furthermore, in some
cases it is desirable to locate all the transition states connecting
two given minima. If that is possible, then the intrinsic reaction
coordinate can be chosen to establish connecting minima.

Probably the most popular approach to treat rare events in
recent years is associated with the path sampling method
developed by Chandler and coauthors.13-19 However, one of
the crucial features of this method is its Markovian nature. At

the same time, all the processes in nature are non-Markovian
to some degree. We never can say in advance what the time
correlation is for arbitrary systems. Although the importance
of memory effects is well realized in some specific problems,
for example surface diffusion,20-22 there is still no general
approach to account for time-correlations in chemical reactions.

Perhaps the most successful theory to embrace the memory
effects in activation processes has been developed by Grote and
Hynes23,24 and their successors. They generalized the original
Kramers theory25 to include non-Markovian effects in the
evolution of the reaction coordinate. More recent developments
of the Grote-Hynes theory can be found in refs 26-28 and
the references therein. Despite the obvious success in the number
of practical problems, the Grote-Hynes theory still has the same
restriction as the original Kramers theory. It deals with the
dynamics of the ideal reaction coordinate assuming a very high
activation barrier. In many practical problems, it is extremely
difficult to locate all the transition states involved in the reaction,
which produces technical limitations to the usefulness of this
approach.

The main goal of the present paper is to propose an alternative
description of rare events with account of their non-Markovian
nature. For this purpose, we use the path integral technique in
its probabilistic sense. As an example, we calculate the most
probable path for the system at finite temperature, which is
important for various techniques. Particularly, it can help in
determination of the reaction coordinate in transition state
theory6-9 or in finding the initial successful path in the stochastic
path sampling method.13-19

The paper is constructed as follows. In Section II we present
the general formalism of probability path integral construction.
Starting with a set of Langevin-like equations with exponentially
correlated random forces, we evaluate the path probability
density in the configurational space of the system. This allows
us to construct in Section III the conditional probability for the* Corresponding author. Electronic address: swkim0412@pusan.ac.kr.
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system to pass through the activation barrier. A knowledge of
this successprobability for reaction to occur gives the straight-
forward algorithm for computing the reaction rate. On the other
hand, the path integral representation is very convenient for
calculation of the most probable path (MPP), which is a natural
reaction coordinate in many chemical processes. Using the
variational principle, we derive a differential equation for MPP.
As an general example, in Section IV we examine the influence
of nonzero correlation time to the temperature dependence of
the reaction coordinate. A numerical example of the memory
effect in the temperature dependence of MPP is given in Section
V. Finally, we outline our results in Section VI.

II. General Formalism

Let us consider a system which, though not in equilibrium,
can still be characterized by a finite complete set of variables
qi (i ) 1...n), whose evolution is governed by the matrix
Langevin equation

where Q ) (q1,..., qn)T, Γ(t), M, and F(t) are the diagonal
matrices, consisting of the time-dependent damping coefficients,
masses, and random forces, respectively. The microscopic origin
of the Langevin equation as well as the approximations involved
are discussed in Appendix A.

When the forceF(t) in eq 1 is delta correlated, i.e.,〈F(ti)-
F(tj)〉 ) 2Dδ(ti - tj), the solution processQ(t) is a Markov
process. However, in real chemical systems the forces encoun-
tered have nonzero correlation time. For the purpose of
generality, we consider here the non-Markovian case, which is
much closer to reality. However, to simplify the picture, we
suppose the forceF(t) to be Gaussian. For this case we have29

whereD is the random force strength,τ is the correlation time,
and the angular brackets represent an ensemble average. We
have chosen the specific form of force-force correlation in eq
2 that corresponds to noise generated by an Ornstein-Uhlenbeck
process,29 widely used in various stochastic problems. In what
follows, we restrict ourselves with this particular coloration.

We have to emphasize here that our set of equations (eq 1)
has rather different meaning from what is exploited in, say,
Kramers or Grote-Hynes theories. The Kramers approach and
all its modifications deal with the Langevin equation along the
ideal reaction coordinate, which is supposed to be known from
the beginning. On the contrary, our set (eq 1) incorporates all
the slow variables in the system. In fact, it can contain both
relevant and irrelevant variables for a chemical process under
study. This means that we do not restrict ourselves to an ideal
reaction coordinate, which generally cannot be always known
in advance. It is of special importance for complex systems with
many possible transition states and/or low activation barriers.

Using the fact thatF(t) (and thereforeD) is a square diagonal
matrix, it can be rigorously shown (see Appendix B for details)
that the pathprobability densityP {F(t)} over the interval (0,t)
is given by

We note that, until now, we did not use any particular
discretization of the initial equations of motion (eq 1). However,
we need to use a representation in discrete time steps to pass
from a random force to coordinate description. According to
the understanding of the functional integral in the probabilistic
sense, the quantityP {F(t)}DF(t) is the probability for paths,
i.e., an expression for the number of realizations of the stochastic
process lying in the regionF(t) to F(t) + DF(t). Now, using
the equality

we can write the corresponding probability in coordinate
representation as

where the effective action is given by

and

is the Jacobian of transformation from theF(t) realization to
theQ(t) realization over the same time interval. The details of
the calculations of the Jacobian are presented in Appendix C.
The main outcome is the Jacobian (eq 7) does not depend on
the system’s coordinates. Also it is shown that including the
inertial term, i.e., the accelerationQ̈, leads to a unique result
for different types of discretization.

III. Sampling Evolution Trajectories and the Reaction
Coordinate

Let us discuss the practical importance of the obtained
relations 5-7. Any average of an arbitrary functional defined
on a fixed time interval can, in principle, be evaluated via the
path integral of this functional with the weight

whereS[Q(t)] is given by eq 6. The implementation of such a
procedure in practice can be done following the scheme of
Chandler’s group.13-19 Although the latter approach was initially
constructed to be essentially Markovian, the memory is already
accounted for in our weight function.8

Furthermore, the proposed treatment gives us even more
advantage. If we consider some stochastic process described
by a set of trajectories that start at thereactantcoordinateQr

and end at theproductcoordinateQp, then the corresponding
conditional probability is given by

MQ̈ ) -Γ(t)Q̇ - d
dQ

U(Q) + F(t) (1)

〈F(t)〉 ) 0

〈F(ti)F(tj)〉 ) D
τ

exp(-
|ti - tj|

τ ) (2)

P {F(t)} ∝ exp{- 1
4D ∫0

t
ds[F2(s) + τ2Ḟ2(s)]} (3)

∫ DF(t)P {F(t)} ) ∫ DQ(t)P {Q(t)} (4)

DQ(t)P {Q(t)} ∝ DQ(t)J[Q(t)] exp(-
S[Q(t)]

4D ) (5)

S[Q(t)] ) ∑
0

t

dt{[MQ̈ + ΓQ̇ +
d

dQ
U(Q)]2

+

τ2[MQ̈ + ΓQ̈ + Q̇
d2

dQ2
U(Q)]2} (6)

J[Q(t)] )
DF(t)

DQ(t)
(7)

J[Q(t)] exp(-
S[Q(t)]

4D ) (8)

P(Qr|Qp, t) ∝ ∫ DQ(t)exp{- 1
4D ∫0

t
dt([MQ̈ + ΓQ̇ +

d
dQ

U(Q)]2
+ τ2[MQ + ΓQ̈ + Q̇

d2

dQ2
U(Q)]2)} (9)
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where functional integration is performed over all possible path
realizations between reactant and product states.

In practical problems, it is sometimes useful to rewrite eq 9
in a discrete form as

where we have identifiedQ0 and QN+1 with the reactant and
product coordinates, respectively. The obtained discrete matrix
expression (eq 10) is one of the main results of this paper. It
can be used for Monte Carlo sampling of paths following, say,
the Pratt scheme,30 when the process under consideration is non-
Markovian. It is also useful for direct estimation of transition
rates in colored systems, following the approach of Chandler’s
group9,13-19 or using the adaptive importance sampling tech-
nique.31,32

In practice, we must decide for every given system which
approach is more appropriate, i.e., the path sampling method
with the weight functional (eq 8) or the direct evaluation of the
rate. The latter seems to be easier to implement for systems
with a high activation barrier, while the former is more general.

Another advantage of the results of eqs 9 and 10 is that they
allow us to calculate the most probable path of reaction, which
generally can be used as the natural reaction coordinate in
simulations of chemical processes. Indeed, the limitD f 0,
P(Qr|Qp, t) given in eq 9 reaches a maximum when the action
S[Q(t)] is minimal. Thus, the major contribution to the path
integral arises around a path that minimizes the actionS[Q(t)]
in reaching Qp from Qr. The mathematical condition for
minimizing the action is

Condition 11 can be exploited relatively easily analytically. To
proceed, let us rewrite eq 6 as

whereS[Q(t)] and L (Q
...

, Q̈, Q̇, Q; t) stand for the analogs of
the action and Lagrangian of some non-mechanical dynamical
system. It can be rigorously proved that if the initial and final
positions are fixed and stationary, then condition 11 leads to
the analog of the Euler-Lagrange equation for the formulated
optimization problem:

At this point we have to note thatS[Q(t)] and L (Q
...

, Q̈, Q̇,
Q; t) are not related to the corresponding physical quantities in

mechanical systems. We use these notations to make the
mathematical analogy clear.

Direct implementation of eq 13 to the Lagrangian yields a
sixth-order nonlinear differential equation forQ(t):

where dashes represent derivatives with respect toQ, andQ(n)

means thenth derivative with respect to time whenever it is
higher than the third one. For a limiting test of eq 14, we can
ignore the memory contribution (τ ) 0) and setΓ ) 0 to obtain

which is rigorously satisfied when the system’s evolution obeys
classical Newtonian equations of motion,U′ + MQ̈ ) 0.

Equation 14 gives us a precise way to determine the most
probable trajectory of the system. To our knowledge, it is the
only way to define the reaction coordinate for an arbitrary
system. Furthermore, knowing the solution for eq 14 allows
one to construct the corresponding Fokker-Planck equation (see
Appendix D). However, we have to solve it with suitable
boundary conditions, which is not a simple task. Alternatively,
we could try to find an approximate successful reaction
coordinate that is not too far from the solution of eq 14. One
possibility to do this was recently proposed by Elber and
Shalloway33 for the simple overdamped Brownian system
subjected to a white random force.

IV. Temperature-Dependent Reaction Coordinate

In general, the particular way to calculate the MPP depends
on the features of a specific system. However, we still can
examine some interesting general consequences of nonzero time
correlation. Specifically, here we investigate the influence of
memory on the temperature dependence of the MPP (or reaction
coordinate, if we identify it). In order to obtain the exact MPP,
we still need to solve the differential eq 14. However, an analysis
of the temperature behavior of MPP can be done relatively easily
whenτ is small enough to neglect the time dependence of the
damping matrixΓ in eq 1. This is a good approximation for
high activation barriers and small or moderate temperatures.
By doing a series of routine integration by parts, we can rewrite
the effective action as follows (see Appendix E):

whereScl[Q(t)] stands for theclassicalpart of the action

and

In order to obtain the MPP, we have to minimize both parts
of the functional.15 Here the structure ofS̃[Q(t)] helps us to
simplify the problem. Indeed, this part of the action must be
nonnegative to ensure path stability; then the minimal value of
S̃[Q(t)] must be zero. This can also be shown applying the
variational procedure, similar to what was done at the end of

P(Qr|Qp, t) ∝ ∫Q1
‚ ‚ ‚∫QN

∏
i)1

N

dQi

exp{-
∆t

4D
∑
j)1

N+1 ([ M

(∆t)2
(Qj - 2Qj-1 + Qj-2) +

Γ

2∆t
(Qj - Qj-2) +

d

dQj-1

U(Qj-1)]2

+ τ2[ M

(∆t)3
(Qj - 3Qj-1 +

3Qj-2 - Qj-3) +
Γ

(∆t)2
(Qj - 2Qj-1 + Qj-2) +

1

2∆t
(Qj - Qj-2)

d2U

dQj-1
2]2)} (10)

δS[Q(t)]

δQ(t)
) 0 (11)

S[Q(t)] ) ∫ dQL (Q
...

, Q̈, Q̇, Q; t) (12)

∂L
∂Q

- d
dt

∂L
∂Q̇

+ d2

dt2
∂L
∂Q̈

- d3

dt3
∂L

∂Q
...

) 0 (13)

τ-2{U′U′′ + (2MU′′ - Γ2)Q̈ + MQ̇2U′′′ + M2Q(4)} )
U′′(2MQ(4) + Q̈U′′ + Q̇2U′′′) - Γ(ΓQ(4) + 3Q̇Q̈U′′′ + Q̇3U′′′′) +

M(Q(6) + 4Q̇Q
...

U′′′ + 3Q̈2U′′′ + 6Q̇2Q̈U′′′′ + Q̇4U′′′′) (14)

U′′(U′ + 2MQ̈) + M(MQ(4) + Q̇2U′′′) ) 0

S[Q(t)] ) Scl[Q(t)] + S̃[Q(t)] (15)

Scl[Q(t)] ) ∫0

t
dt{(MQ̈ + ΓQ̇ + τQ̇

d2

dQ2
U(Q))2

+ ( d
dQ

U(Q))2}
(16)

S̃[Q(t)] ) 2τΓ ∫0

t
dt(Q̈ - τQ

...
)U′ + 2τM ∫0

t
dt(Q

...
- τQ

...
)U′ (17)
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Section III. So our further aim is to minimize only the classical
part of the action.16 The latter can be represented as

where we have introduced the new coordinate vector

and made a formal replacementM ) 2Γ2 andV(Xτ) ) -(d/dQ
U(Q))2.

Further analysis is rather similar to what is done in ref 33.
We, however, briefly reproduce it here in order that this study
be self-consistent. Let us define the alternative classical
Lagrangian

By defining the corresponding classical momentum,

as well as the classical Hamiltonian,H cl ) pẊτ - L cl, we can
rewrite the classical action in the following standard form:

Following ref 33, we consider the total timet as an input. In
this case, there is a constant HamiltonianHcl

(s), which preserves
the stationary path. Mathematically, it is expressed as

Since the last term in eq 23 is path independent, the variation
of Scl is equivalent to the variation of the subactionS̃cl )
∫Xt

(r)
Xt

(p)
pdls. Using the standard classical mechanics formula

p ) x2M (E-V(Xτ)), the subaction can be represented as

The only yet undetermined quantity in our consideration is
H cl

(s). To find this, we assume that the reactant state of the
system corresponds to its thermal equilibrium, so that, att ) 0,
H cl

(s) can be expressed as

where n is the number of degrees of freedom,kB is the
Boltzmann constant, andT is the characteristic temperature.
Thus, using the simple analogy with classical mechanics of a

point-like particle in one dimension, we show that the reaction
coordinate can be chosen as a stationary pathls, that minimizes
the functional

The corresponding time is thus given by

Note that, if we set the correlation time to be zero,τ ) 0,
then the result (eq 28) coincides with the corresponding
functional obtained in ref 33 for the system subjected to a white
force. Expression 28 works for both systems with or without
the inertial term (acceleration) of the Langevin equation.
However, the account of the inertial term allows us to unify
the result independently of the discretization used.

We see that the account of the memory effect changes the
result through the second derivative of the potential. We can
introduce an effective temperature,

to reduce formulas 27 and 28 to look formally as the case of a
white force. However, the memory effect does affect even the
limiting cases. In the case of zero temperature, we have

which corresponds to the steepest descent path. However,
another limiting case of high temperatures gives

which is not simply a straight line as in the case of white forces.
It becomes a straight line only for smallτ or very strong
damping. However, we should be very careful with certain
physical conclusions here, because our initial construction of
the Langevin equation assumes only moderate temperatures.
Otherwise, we have to account for the time dependence of the
memory function in eq 1. An even more important restriction
for the temperature comes from the approximation done when
obtaining eq 26. Following the authors of ref 33, we require
the particle to be thermalized att ) 0, but start to moveexactly
from the minimum point, where dU/dQ ) 0. Of course, this
approximation is not good for high temperatures. Nevertheless,
we can examine the memory effect on the system dynamics
under appropriate conditions. This is done in the next section
with the simple Huo-Straub potential.34

V. Numerical Illustration

We consider the optimal paths in the 2D (n ) 2) potential
with three minima, Figure 1, considered in refs 33 and 34:

S ) ∫Qr

Qp
dl{nkBTΓ2

m (1 + τ
Γ

d2

dQ2
U(Q)) + ( d

dQ
U(Q))2}1/2

(26)

t ) Γ ∫Qr

Qp
dl{nkBTΓ2

m (1 + τ
Γ

d2

dQ2
U(Q)) + ( d

dQ
U(Q))2}-1/2

(27)

T* ) T(1 + τ
Γ

d2

dQ2
U(Q)) (28)

S ) ∑
Qr

Qp

dl| d

dQ
U(Q)| (29)

S ) ΓxnkBT

m
∫Qr

Qp ∑
Qr

Qp

dl(1 +
τ

Γ

d2

dQ2
U(Q))1/2

(30)

U(x, y) ) -5e-y2
[e-(x-1)2 + e-(x+1)2] - 3e-x2

[e-(y-5/3)2 - e-(y-1/3)2]
(31)

Scl[Q(t)] ) ∫0

t
dt{M Ẋτ

2

2
- V(Xτ)} (18)

Xτ ) Q(1 + τ
Γ

d2

dQ2
U(Q)) + M

Γ
Q̇ (19)

Lcl ) Γ2Ẋτ
2 + ( d

dQ
U(Q))2

(20)

p ) ∂L
∂Ẋτ

) 2Γ2Ẋτ (21)

Scl ) ∫0t
(pẊτ - Hcl)dt ) ∫Xτ(0)

Xτ(t)
pdl - ∫0t

Hcldt (22)

δScl

δl
) 0

Scl ) ∫Xτ
(r)Xτ

(p)
pdls - ∫0t

Hcl
(s)dt ) ∫Xτ

(r)Xτ
(p)

pdls - Hcl
(s)t (23)

S̃cl ) 2Γ ∫Xτ
(r)

Xτ
(p)

dlxH cl
(s) + ( d

dQ
U(Q))2

(24)

H cl
(s) )

p2(0)
2M

- ( d
dQ

U(Qr))2
)

p2(0)

4Γ2
≈ nkBTΓ2

m
(25)
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We discretize the actionS, eq 26, in space in the following
way:35

The discretization is done on a grid ofN ) 20 space pointsQi

≡ (xi,yi), i ) 1...N, plus the initial (0th) and final [(N + 1)th]
points, chosen to correspond to the two lowest minima of the
potential. The term proportional toλ in the actionSdiscretecauses
different discretization intervals along the path to have equal
lengths, and it does not affect the value of the action if this
condition is satisfied exactly. The value ofλ ) 100 is used
throughout.

The paths are optimized using the “downhill simplex”
technique.36 The optimization runs are stopped at points where
the relative changes of the actionSdiscretedo not exceed 10-10,
and they are restarted several times to ensure the final
convergence. Besides, in the separate control runs with two
generalizations of the above technique, involving simulated
annealing36 and subspace searching,37 we check that the results
do not depend on the optimization details. The optimization
techniques used, though slower than the methods where the
knowledge of the gradient of the function being optimized is
required, have a clear advantage in that they permit a study of
the cases where the action depends on the coordinates in a very
complicated manner.

As illustrated in Figure 1, there are two different optimal paths
joining the two lowest minima of the potential: the “longer”
path going through the third, “intermediate” minimum, and the
“shorter” direct one. For lower intervals of temperature, both
paths are stable; however, as the temperature is increased, the

“longer” path sharply disappears at some temperature. In the
absence of memory effects (τ ) 0), the transition temperature
is numerically found to correspond toH0 ) nkBT0Γ2/M ≈ 1.3040
( 0.0002 (the temperature is expressed through an “effective
Hamiltonian” H ) nkBTΓ2/M, that appears in the expression
for the action eq 26).

We now inquire as to how the memory effect changes the
temperature at which the “longer” path disappears. Numerically
we determine that this transition temperature decreases withτ,
and this decrease can be very precisely fitted by a simple curve,

with the constant coefficientâ ) 11.20( 0.02 (see Figure 2).
This functional form can be explained simply in terms of the
effective temperature introduced by eq 28. Indeed, according
to eq 28, the presence of the nonzero memory term effectively
modifies the temperature of the system approximately asT* )
T(1 + τ/Γ‚d2U/dQ2), where d2U/dQ2 is just the Laplacian of
the potentialU(Q) along the path. Namely, the memory effects
lead to the local “heating” of the system in those parts of the
path where the Laplacian of the potential is positive (d2U/dQ2

> 0), i.e., near the minima, and on the other hand, the system
is locally “cooled down” in the parts of the path where the
Laplacian is negative, i.e., near the maxima of the reaction
potential.

In the case of a system with memory (τ > 0), it is this local
effective temperatureT* (rather than the Langevin temperature
T itself) that defines the criterion for the stability/instability of
a given path at a givenT. (This also strongly affects the
transition rate, because it is now dependent on the new effective
temperatureT*.) For example, whenT is increased, the instability
of the “longer” path (Figure 1) starts from its middle part. It is
this middle part that passes near/through the third, local
minimum of the reaction potential, where the Laplacian is found
to be a large positive value of d2U/dQ2 ≈ 10. This should lead
to local heating of the system, according to eq 28.

Thus, for a system with memory, in order to determine the
transition temperature for the disappearance of the “longer” path,
it is the increased local effective temperature of the middle part
of the pathT middle

/ ) T(1 + τ/Γ‚(d2U/dQ2)middle) that should be
equated to the “critical” valueT0 ) H0M/nkBΓ2, as measured
for the case of zero memory,τ ) 0. Hence, one obtains eq 34
with the coefficientâ ≈ (d2U/dQ2)middle identified as the value

Figure 1. The “longer” (triangles) and “shorter” (squares) optimal paths
for the three-minima potential, eq 31. The potential is shown as a
contour plot.

2Sdiscrete) ∆l0,1I0 + ∆lN,N+1IN+1 + ∑
i)1

N

(∆li-1,i + ∆li,i+1)Ii +

λ ∑
i)0

N

(∆li,i+1 - 〈∆l〉)2 (32)

∆li,i+1 ) x(Qi - Qi+1)
2

Ii ) {2kBTΓ2

M (1 + τ
Γ

d2

dQi
2

U(Qi)) + ( d
dQi

U(Qi))2}1/2

〈∆l〉 )
1

N
∑
i)0

N

∆li,i+1 (33)

Figure 2. Value of the normalized temperatureH ) nkBTΓ2/M for
the transition from the “longer” to the “shorter” path as a function of
the correlation timeτ/Γ.

H )
H0

1 + âτ/Γ
(34)
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of the Laplacian of the potential in the middle part of the path.
The numerical coincidence of the values forâ ≈ 11.20 as
determined from fitting versus (d2U/dQ2)middle ≈ 10, as deter-
mined directly from the path, is quite satisfactory. Let us note
here, that the local heating of the system near the initial and
final points of the optimal path, i.e., near the two main minima
where the Laplacian is also large positive, does not seem to
play any role in the stability of the path, possibly because these
regions lie far from the most “sensitive” middle part of the path.

In summary, the explanation of the stability of the path in
terms of the effective local “heating/cooling” of the system due
to memory effects seems reasonable, and, to the best of our
knowledge, this idea is also new. It would be interesting to
further confirm the validity of this idea with more realistic
models.

VI. Conclusions

The focus of our study is a chemical system which obeys
Langevin dynamics (eq 1) with colored random force (eq 2).
Using the path integral technique, we construct conditional
probability 9 for the system to pass successfully from the
reactant state to the product. Our formulas 9 and 10 do not
depend on the particular discretization of the equations of motion
and can be directly used for either the path sampling of non-
Markovian systems or direct evaluation of the reaction rates.
Using variational principle 11, we give the differential eq 14
for the most probable path (MPP) of reaction. However, in view
of its complexity, we use our general relations 9 and 10 to
generalize recent calculations33 of the most probable path to
the case when the inertial term is accounted for in the Langevin
equation. By considering nonzero correlation time, we examine
how important the memory effect is for MPP calculations, and
we demonstrate our results numerically with a three-hole
potential model (eq 31).

Finally, we would note that our approach in principle can be
applied to any activation process, although would be mostly
used for processes where the memory effects are essential. In
addition to the surface diffusion problem,20-22 chemically
important examples of such processes include SN2 -like reactions
in water, which have been shown to involve considerable non-
Markovian effects.38,39 These kind of reactions are of special
importance for studies of heavy-particle charge-transfer reactions
in solution.40-42 Another expected important application of the
proposed framework is the interconversion process between an
ion pair and solvent.43 These types of processes play an
important role in a wide range of chemical and biological
problems, like macromolecular catalysis,44 biochemical hy-
drolysis mechanisms,45 and protein stability.46,47

Our approach also allows the investigation of noise-induced
rate processes between macroscopic systems states subject to
external noise, which experiments already are able to do quite
precisely.48 Another notable advantage of the developed frame-
work is an account of the inertial term in the Langevin equation,
which is important in situations where the evolution is not
overdamped. This should be useful in the analysis of fast
processes, such as low-barrier isomerization dynamics.49,50

Of course, the above examples do not exhaust all the problems
manifesting strong memory effects. The practical implementa-
tion of the proposed approach will be the goal of our future
studies.
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Appendix A: Langevin Dynamics

Accurate numerical investigations of chemical reactions and,
more generally, activation processes can be done by different
techniques. Probably the most straightforward one is a micro-
scopically detailed molecular dynamics simulation. However,
for real systems it is often too time extensive and expensive.
Moreover, such detailed simulations sometimes take into account
degrees of freedom which are not important for the outcome
but require a lot of resources to simulate them. For these cases,
there are various theoretical techniques developed to reduce
unimportant degrees of freedom, or, roughly speaking, to
integrate equations of motion over them.

The Langevin equation (and equivalently the Fokker-Planck
equation) is often used in a phenomenological approach, with
the choice of a model adiabatic potential and a friction
parameter. However, it could be derived rigorously from
microscopic Hamiltonian equations that incorporate all the
degrees of freedom in the system. Probably, the most compre-
hensive approach to this problem can be done by the use of
Mori projection operator techniques.20,21,51-54 The basic idea is
to separate the variables into two Hilbert subspaces, one for
the slow degrees of freedom denoted here byQ to be treated
explicitly, and one for thefast degrees of freedom to be
integrated out. The particular choice of these subspaces depends
on the nature of the system under consideration. Ideally, the
procedure of degrees reduction must be done for each system
under study individually. When we identify the corresponding
subspaces, we can define a projection operatorP onto the
subspace of slow variables and the orthogonal projection
operatorQ ) 1 - P. By projecting out all the fast degrees of
freedom, we end up with a generalized Langevin equation of
motion of the form

whereM is the effective mass,U(Q) is the adiabatic potential,
andF(t) is the random force. The damping of slow degrees is
characterized by a memory functionΣ(t,t′) that usually depends
in a complicated manner on the past history of the system
evolution. Importantly, the memory functionΣ(t,t′) and the
fluctuating forceF(t) in eq A-1 are not independent of each
other since they both arise from the coupling to the fast variables
subspace. These quantities are related by the fluctuation-
dissipation theorem55

The random forceF(t) is the component of the total force
projected out of the subspace of slow degrees and generally
has a very complicated time dependence given by

whereL is the Liouville operator. Usually the correlator in eq
A-2 is approximated in some manner. The simplest form of
memory function occurs in the Markovian limit, where the time
scale for the fast degrees of freedom is set to be zero. In this
case, the memory function is approximated by a delta function,
and the first term on the right-hand side (RHS) of eq A-1

MQ̈(t) ) - ∫
-∞

t

Σ (t, t′)Q̇(t′)dt′ - d
dQ

U(Q) + F(t) (A-1)

Σ (ti,tj) ) 1
kBT

〈F(ti)F(tj)〉 (A-2)

F(t) ) -exp{-i Q L Q t} d
dQ

U(Q) (A-3)
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becomesΓQ̇, where Γ is a constant. This is a common
approximation in treatments of chemical reactions. Less severe
approximations can be done in the manner similar to the Grote-
Hynes theory23,24 to account for memory effects. In this case,
the first term on the RHS of eq A-1 is approximated asΓ(t)-
Q̇(t), where Γ(t) is the matrix of time-dependent damping
coefficients.

Appendix B: Probability Density Function

All the matrices involved in the Langevin eq 1 are assumed
diagonal, which allows us to work with them similarly to one-
dimensional equations. We assume the random forceF(t) to be
Gaussian with zero mean. Since the process is defined over an
infinite time interval, it is convenient to work with the Fourier
transform of the correlator defined in eq 2,

where

If the probability density functional is Gaussian, then using
〈F(ω)〉 ) 0 and eq B-1, we can write56

which is consistent with eq 3 in the main text.

Appendix C: Calculation of the Jacobian, Eq 7

In calculating the Jacobian in eq 7, we have to resort to a
limiting process that starts with a representation in discrete time
steps. Specifically, we may choose

Further, we can putQj ) Q(tj) and

Carrying through this procedure in detail, we arrive at a recursive
relation of the form

We have to emphasize here that eq C-3 is a result of direct
recursion construction which has, however, some “degrees of
freedom,” particularly in the last form. For example, Graham57,58

used the following form:

This form of discretization was also considered in ref 33, where
it has been shown that the discrepancy between final results is

due to different representations of discrete forces. A thorough
investigation of the problem of a unique form of discretization
of a functional integral can be found in refs 59 and 60.
Particularly, Schmid60 has argued that the form C-3 is only
appropriate for the path integral used in the probabilistic sense
because of a requirement of zero path fluctuations at the terminal
point. Meanwhile, we use expression C-3, but will come back
to this point later.

The Jacobian eq 7 can now be calculated in a straightforward
way as

The main consequence of our calculations is a coordinate
independence of the Jacobian eq C-5. However, it can be
checked easily that this Jacobian would be coordinate dependent
if we use another discretization of the forces (eq C-4). Although
we believe this latter expression is not appropriate in our case,
it will not be discussed here in detail because it is not crucial
in this approach. Indeed, using the discretization C-4, we obtain
the term coming from the potential that is of next order in∆t.
In contrast with the overdamped case investigated in ref 33,
this leads to a vanishing contribution to the action in the
continuous path limit where, when∆t f 0. We note here that
the final result for the Jacobian becomes divergent when∆t f
0, so that the question of final limit of path integral arises. This
problem can be removed by a proper normalization of the
integral in the continuum limit. We do not address this question
in detail, since we are interested in therelatiVe contributions
of different path realizations.

Appendix D: Fokker-Planck Equation

To construct the Fokker-Planck equation (FPE) for the
system governed by eqs 1 and 2, let us start with the exact
master equation,61

which, after some algebra, can be represented as

The angular brackets stand for the ensemble average, which
can be done by the path integration,

〈F(ω)F(ω′)〉 ) 2πDK(ωτ)δ(ω - ω′) (B-1)

K(ωτ) ) ∫0

∞
dsK(s) exp(iωτs) + c.c.) 2

1 + ω2τ2
(B-2)

P {F(t)} ∝ exp{- 1
2D ∫-∞∞

dω
2π

F(-ω)K-1(ωτ)F(ω)}
) exp{- 1

4D ∫-∞

∞ dω
2π

F(-ω)(1 + ω2τ2)F(ω)}
) exp{- 1

4D ∫-∞

∞
dtF(t)(F(t) - τ2F̈(t))}

) exp{- 1
4D ∫-∞

∞
dt(F2(t) + τ2Ḟ2(t))} (B-3)

∆t ) t/N ) tj - tj-1; j ) 1,...,M; t0 ) 0 (C-1)

Fj ) ∫
tj-1

tj

dsF(s) (C-2)

Fj ) M
∆t

(Qj - 2Qj-1 + Qj-2) + Γ
2

(Qj - Qj-2) + ∆t
d

dQj-1
U(Qj-1)

(C-3)

1
2 { d

dQj
U(Qj) + d

dQj-1
U(Qj-1)} (C-4)

DF(t)

DQ(t)
) detNf∞(∂F1

∂Q1

∂F1

∂Q2

∂F1

∂Q3
...

∂F2

∂Q1

∂F2

∂Q2

∂F2

∂Q31
...

∂F3

∂Q1

∂F3

∂Q2

∂F3

∂Q3
...

... ... ... ...

) ) deNf∞

(M
∆t (1 + Γ∆t

2M) 0 0 0 ...

∆t
d2U

dQ1
2

- 2M
∆t

M
∆t (1 + Γ∆t

2M) 0 0 ...

M
∆t (1 - Γ∆t

2M) ∆t
d2U

dQ2
2

- 2M
∆t

M
∆t (1 + Γ∆t

2M) 0 ...

0
M
∆t (1 - Γ∆t

2M) ∆t
d2U

dQ3
2

- 2M
∆t

M
∆t (1 + Γ∆t

2M) ...

... ... ... ... ...

)) (M
∆t)

N (1 + Γ∆t
2M)Nf∞

N

(C-5)

∂P {Q(t)}
∂t

) ∂

∂t
〈δ(Q(t) - Q)(V(t) - V)〉 (D-1)

∂P {Q(t)}
∂t

) -V
∂P {Q(t)}

∂Q
+

dU(Q)
dQ

∂P {Q(t)}
∂V

+

Γ ∂

∂V
(VP {Q(t)}) + ∂

2

∂V∂Q {D
τ ∫0

t
dt′ exp(- |t - t′|

τ )〈δ(Q(t) -

Q)(V(t) - V)
δQ(t)

δF(t′)〉} + ∂
2

∂V2 {D
τ ∫0t

dt′

exp(-|t - t′|
τ )〈δ(Q(t) - Q)(V(t) - V)

δV(t)

δF(t′)〉} (D-2)
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and δQ(t)/δF(t′) and δV(t)/δF(t′) are the corresponding func-
tional derivatives. In fact, eq D-2 gives us nothing useful in
comparison with the general relation (eq D-1), but it becomes
meaningful if we work along the most probable path{Qs(t),Vs-
(t)}, which is the solution of eq 14. In this case, the functional
derivatives in eq D-2 can be taken out of the path integrals,
and the remaining integration gives us precisely the probability
densityP {Qs(t)}. Going through this procedure, we come to
the generalized Fokker-Planck equation

where the generalized diffusion coefficients are defined as

Appendix E: Derivation and Analysis of Eq 15

After straightforward algebra, eq 6 can be reorganized as

whereScl[Q(t)] is given by eq 16, andJi are the integrals to be
analyzed. The only requirement we use here is that the system
is stationary at the reactant and product states. This means that
the system starts and ends its evolution at the points whereU′
) 0 and whose coordinates and velocities at these points are
time-independent. In this case,

so that this part can be excluded from theclassicalaction.

This is exactly zero if the potential does not depend on time
explicitly;

where ú ) MQ̈ + ΓQ̇. The last integral in eq E-4 must be
constant because of Maupertuis’ principle62 in the space of
variablesú.

Let us rewrite the integralsJ4 andJ5 as

The first terms in both integrals turn out to be zero because of
the conditionU′ ) 0 at the initial and final states. However the
last terms are path dependent and generally do contribute to
the total action. Thus we come to formula 15 in the main body
of the text.
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