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Activation Processes with Memory
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We propose a mathematical treatment of the activated processes governed by stochastic Langevin dynamics
with a colored random force, corresponding to a noise generated by an Otridhdémbeck process. Such
non-Markovian dynamics take place in a variety of chemical and biological systems. Using the path integral
approach, we constructed the conditional probability for passing between two stationary states in configurational
space. Our relations can be used for Monte Carlo sampling of evolution trajectories for systems with many
degrees of freedom as well as for determining the reaction coordinate used in transition state theory. On the
basis of our relation for a conditional probability, we generalize the method of determining the most probable
path to the case of colored random force. Using the simple three-hole potential, we examine numerically the
effect of nonzero correlation time (memory) on the evolution of the most probable path for a finite temperature.

the same time, all the processes in nature are non-Markovian
to some degree. We never can say in advance what the time

Although the methodology of chemical reactions in the gas correlation is for arbitrary systems. Although the importance
phase is rather well developed, similar processes in condensegyt memory effects is well realized in some specific problems,
phases are still under earlier stages of investigdtibnere are for example surface diffusiof? 22 there is still no general
several proposed approaches to the description of variousgpnroach to account for time-correlations in chemical reactions.
activation processes in such complex systems. However, there " pe ;nc the most successful theory to embrace the memory

is still no single approach applicable to every kind of reaction.
One of the main restrictions comes from our numerical abilities.
Some molecular processes in chemistry and biology occur on
time scales that range from femtoseconds to minutes and more

effects in activation processes has been developed by Grote and
Hyne£324and their successors. They generalized the original
Kramers theor§P to include non-Markovian effects in the
evolution of the reaction coordinate. More recent developments

There have been several attempts to develop the methodology ¢ e Grote-Hynes theory can be found in refs 288 and

that enables studies of biochemical phenomena not accessibl
to molecular dynamics simulatioAs®

®he references therein. Despite the obvious success in the number
of practical problems, the GrotéHynes theory still has the same

Another reason for computational difficulties comes from the restriction as the original Kramers theory. It deals with the

fact that most transitions are rare events. Conventional methodsdynamics of the ideal reaction coordinate assuming a very high
for studying rare events in condensed phases are based omctivation barrier. In many practical problems, it is extremely
transition state theory.® When a typical activation process djfficult to locate all the transition states involved in the reaction,
occurs, many degrees of freedom will generally contribute to which produces technical limitations to the usefulness of this
transport the system from one stable region to another, crossingapproach.

a dynamical bottleneck called a transition state. The latter is  The main goal of the present paper is to propose an alternative
usually defined as the saddle point that the system has to pasgescription of rare events with account of their non-Markovian
in order for the reaction to occéf-*Indeed, while determining  nature. For this purpose, we use the path integral technique in
minima of potential energy surfaces is relatively easy, locating jts probabilistic sense. As an example, we calculate the most
transition states, which are first-order maxima on the potential probable path for the system at finite temperature, which is
energy surface, is much more difficult. Furthermore, in some jmportant for various techniques. Particularly, it can help in
cases it is desirable to locate all the transition states connectingyetermination of the reaction coordinate in transition state

two given minima. If that is possible, then the intrinsic reaction  theonp-9 or in finding the initial successful path in the stochastic
coordinate can be chosen to establish connecting minima. path sampling methot 19

Probably the most popular approach to treat rare events in - The paper is constructed as follows. In Section Il we present
recent years is associated with the path sampling methodthe general formalism of probability path integral construction.

developed by Chandler and coauthbts? However, one of  starting with a set of Langevin-like equations with exponentially
the crucial features of this method is its Markovian nature. At correlated random forces, we evaluate the path probabmty

density in the configurational space of the system. This allows

* Corresponding author. Electronic address: swkim0412@pusan.ac.kr. us to construct in Section Il the conditional probability for the
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system to pass through the activation barrier. A knowledge of We note that, until now, we did not use any particular

this succesprobability for reaction to occur gives the straight- discretization of the initial equations of motion (eq 1). However,

forward algorithm for computing the reaction rate. On the other we need to use a representation in discrete time steps to pass

hand, the path integral representation is very convenient for from a random force to coordinate description. According to

calculation of the most probable path (MPP), which is a natural the understanding of the functional integral in the probabilistic

reaction coordinate in many chemical processes. Using thesense, the quantity?{ F(t)} ¥F(t) is the probability for paths,

variational principle, we derive a differential equation for MPP. i.e., an expression for the number of realizations of the stochastic

As an general example, in Section IV we examine the influence process lying in the regiof(t) to F(t) + &YF(t). Now, using

of nonzero correlation time to the temperature dependence ofthe equality

the reaction coordinate. A numerical example of the memory

effect in the temperature dependence of MPP is given in Section j’ DFO)P{FQ)} = f Q) {QM)} (4)

V. Finally, we outline our results in Section VI.

) we can write the corresponding probability in coordinate

Il. General Formalism representation as
Let us consider a system which, though not in equilibrium, q00]

can still be characterized by a finite complete set of variables ‘ * (», _ )

g (i = 1..n), whose evolution is governed by the matrix YRR} B YRMIQD] ex 4D ®)

Langevin equation ] .
where the effective action is given by

MO = ~T()Q - d% u(Q + F(t) ) Z { ,
Q=S o +

MQ+TQ+ di U@

where Q = (qu,..., gn)", T(t), M, and F(t) are the diagonal Q & 2

matrices, consisting of the time-dependent damping coefficients, AMO+TO+ O— ] (6)

masses, and random forces, respectively. The microscopic origin dQ?

of the Langevin equation as well as the approximations involved

are discussed in Appendix A. and

When the force=(t) in eq 1 is delta correlated, i.€(t)-

F()O= 2Do(ti — t;), the solution procesQ(t) is a Markov Q0] = DF(t) @

process. However, in real chemical systems the forces encoun- 2Q(t)

tered have nonzero correlation time. For the purpose of

generality, we consider here the non-Markovian case, which is is the Jacobian of transformation from tR¢t) realization to

much closer to reality. However, to simplify the picture, we the Q(t) realization over the same time interval. The details of

suppose the forcE(t) to be Gaussian. For this case we fdve the calculations of the Jacobian are presented in Appendix C.
The main outcome is the Jacobian (eq 7) does not depend on

u(@Q

F(t)=0 the system’s coordinates. Also it is shown that including the
inertial term, i.e., the acceleratidp, leads to a unique result
EIF(ti)F(tj)D=%exp(— It ;t,-|) @) for different types of discretization.

[1l. Sampling Evolution Trajectories and the Reaction
whereD is the random force strengthjs the correlation time, Coordinate

and the angular brackets represent an ensemble average. We
have chosen the specific form of foreforce correlation in eq
2 that corresponds to noise generated by an Ornstéitenbeck

Let us discuss the practical importance of the obtained
relations 5-7. Any average of an arbitrary functional defined

process? widely used in various stochastic problems. In what ona fixed time int'erval can, in principle, b.e evaluated via the
follows, we restrict ourselves with this particular coloration. path integral of this functional with the weight
We have to emphasize here that our set of equations (eq 1) Q)]
has rather different meaning from what is exploited in, say, JQM)] exp(— T)
Kramers or Grote-Hynes theories. The Kramers approach and
all its modifications deal with the Langevin equation along the
ideal reaction coordinate, which is supposed to be known from
the beginning. On the contrary, our set (eq 1) incorporates all
the slow variables in the system. In fact, it can contain both
relevant and irrelevant variables for a chemical process under
study. This means that we do not restrict ourselves to an ideal
reaction coordinate, which generally cannot be always known
in advance. It is of special importance for complex systems with
many possible transition states and/or low activation barriers.
Using the fact thak(t) (and therefor®) is a square diagonal
matrix, it can be rigorously shown (see Appendix B for details)
that the pattprobability densityc?{ F(t)} over the interval (@) 1 ) .
is given by P(QIQ, ) T f .MQ(t)exp{ ~a0 Jo dt([MQ +TQ+

®

whereS[Q(t)] is given by eq 6. The implementation of such a
procedure in practice can be done following the scheme of
Chandler’s group®-1° Although the latter approach was initially
constructed to be essentially Markovian, the memory is already
accounted for in our weight functich.

Furthermore, the proposed treatment gives us even more
advantage. If we consider some stochastic process described
by a set of trajectories that start at tfeactantcoordinateQ;
and end at thg@roductcoordinateQp, then the corresponding
conditional probability is given by

. 2
MQ+FQ+QFU(Q)] )} ©)

SFO) O ex] 35 Jo ¢S + C) IC d%u«g)]% 72 -
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where functional integration is performed over all possible path
realizations between reactant and product states.

In practical problems, it is sometimes useful to rewrite eq 9
in a discrete form as

N
PQIQy DD oo+ o, []e

At N+1 P
ex

a4 £
3 Q-Q2+t d u(Q
o372 aQ -2

(Qj - 2Qj—1 + Qj—z) +

(Ar?
2
+ 72

M
(Q-3Q .+
t

(A9
2
)} a0

where we have identifie®@, and Qn+1 with the reactant and
product coordinates, respectively. The obtained discrete matrix
expression (eq 10) is one of the main results of this paper. It
can be used for Monte Carlo sampling of paths following, say,
the Pratt schem&when the process under consideration is non-
Markovian. It is also useful for direct estimation of transition
rates in colored systems, following the approach of Chandler's
groupg13-19 or using the adaptive importance sampling tech-
nique3t32

In practice, we must decide for every given system which

r
3Qj—2 - Qj—s) + _2 (Qj - 2Qj—1 + Qj—z) +
(A1)

2,

1
Z_At (Qj - Qj—z)

2

o

approach is more appropriate, i.e., the path sampling method

Zhukov et al.

mechanical systems. We use these notations to make the
mathematical analogy clear.

Direct implementation of eq 13 to the Lagrangian yields a
sixth-order nonlinear differential equation fQ(t):

T UV + MU - THQ + MQU™ + MPQW} =
UH(ZMQ(4) + Quu + Q2Um) _ r(rQ(4) + 3QQU,” + Q3U”u) +

M(Q(6)+4QQ“U'” +3Q2Um +6Q2QU””+Q4U”") (14)

where dashes represent derivatives with respe, tand Q"
means thenth derivative with respect to time whenever it is
higher than the third one. For a limiting test of eq 14, we can
ignore the memory contribution & 0) and sel” = 0 to obtain

U+ 2M0) + MMQW + QU =0

which is rigorously satisfied when the system'’s evolution obeys
classical Newtonian equations of motidd\, + MQ = 0.

Equation 14 gives us a precise way to determine the most
probable trajectory of the system. To our knowledge, it is the
only way to define the reaction coordinate for an arbitrary
system. Furthermore, knowing the solution for eq 14 allows
one to construct the corresponding FokkBtanck equation (see
Appendix D). However, we have to solve it with suitable
boundary conditions, which is not a simple task. Alternatively,
we could try to find an approximate successful reaction
coordinate that is not too far from the solution of eq 14. One
possibility to do this was recently proposed by Elber and
Shalloway?® for the simple overdamped Brownian system
subjected to a white random force.

with the weight functional (eq 8) or the direct evaluation of the |, Temperature-Dependent Reaction Coordinate
rate. The latter seems to be easier to implement for systems

with a high activation barrier, while the former is more general.
Another advantage of the results of eqs 9 and 10 is that they
allow us to calculate the most probable path of reaction, which

In general, the particular way to calculate the MPP depends
on the features of a specific system. However, we still can
examine some interesting general consequences of nonzero time

generally can be used as the natural reaction coordinate incorrelation. Specifically, here we investigate the influence of

simulations of chemical processes. Indeed, the linit> O,
P(Qr|Qp, ) given in eq 9 reaches a maximum when the action
JQ(t)] is minimal. Thus, the major contribution to the path
integral arises around a path that minimizes the acH@(t)]

in reaching Qp, from Q. The mathematical condition for
minimizing the action is

oW _

5Q() D

Condition 11 can be exploited relatively easily analytically. To
proceed, let us rewrite eq 6 as

QI = [ dQ/(Q,Q.Q Q1)

whereJQ(t)] and /(Q, &, O, Q; t) stand for the analogs of
the action and Lagrangian of some non-mechanical dynamical
system. It can be rigorously proved that if the initial and final
positions are fixed and stationary, then condition 11 leads to
the analog of the EulerLagrange equation for the formulated
optimization problem:

(12)

¥ . 2 » 3 qap
W _dar, & oy & iy (13)

At this point we have to note th&Q(t)] and /(Q, O, O,
Q; t) are not related to the corresponding physical quantities in

memory on the temperature dependence of the MPP (or reaction
coordinate, if we identify it). In order to obtain the exact MPP,
we still need to solve the differential eq 14. However, an analysis
of the temperature behavior of MPP can be done relatively easily
whent is small enough to neglect the time dependence of the
damping matrixI" in eq 1. This is a good approximation for
high activation barriers and small or moderate temperatures.
By doing a series of routine integration by parts, we can rewrite
the effective action as follows (see Appendix E):

Q)] = SIQW] + JQW]
where &[Q(t)] stands for theclassicalpart of the action

2
U(Q)) }
(16)

(15)

o? 2 d
EZU(Q)) +(—

t . . .
S0QM1 = ] dt{ (MQ FIQ+ Q- )

and

QU] = 2T [ di(@— Q) +2eM [ (@ - Q) (17)

In order to obtain the MPP, we have to minimize both parts
of the functional’® Here the structure o§Q(t)] helps us to
simplify the problem. Indeed, this part of the action must be
nonnegative to ensure path stability; then the minimal value of
§Q(t)] must be zero. This can also be shown applying the
variational procedure, similar to what was done at the end of
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Section lll. So our further aim is to minimize only the classical point-like particle in one dimension, we show that the reaction
part of the actiort® The latter can be represented as coordinate can be chosen as a stationary athat minimizes
the functional

oo kT d 2| ¥
S= fr dl{ o (l + I:d—Qz u@Q |+ (@ U(Q)) (26)
The corresponding time is thus given by

XT=Q(1+1d—2U(Q))+MQ (19) Nk, T2
T 402 T o Q"dl{kB (
Q

WELS
11 = f, dt{ 5

- V(x,)} (18)

where we have introduced the new coordinate vector

—1/2

v & d 2
1 Fog U(Q)) + (4 V@) } (27)

m

and made a formal replacemenit= 2I'2 andV(X,) = —(d/dQ
U(Q))2 Note that, if we set the correlation time to be zeros= 0,

then the result (eq 28) coincides with the corresponding
functional obtained in ref 33 for the system subjected to a white
force. Expression 28 works for both systems with or without
the inertial term (acceleration) of the Langevin equation.
However, the account of the inertial term allows us to unify
the result independently of the discretization used.
7,=TX?+ (d U(Q)) (20) We see that the account of the memory effect changes the

Q result through the second derivative of the potential. We can
introduce an effective temperature,

Further analysis is rather similar to what is done in ref 33.
We, however, briefly reproduce it here in order that this study
be self-consistent. Let us define the alternative classical
Lagrangian

By defining the corresponding classical momentum,

T d

anT

to reduce formulas 27 and 28 to look formally as the case of a
white force. However, the memory effect does affect even the
limiting cases. In the case of zero temperature, we have

as well as the classical Hamiltonia#f,¢, = p)'(1 — &, We can
rewrite the classical action in the following standard form:

= [ (p% —7dt= [ Ypdi— [ At 22 ki
L/())t(pr o) fx,(o)p j:)t d (22) J'=ZdlldiQU(Q)| (29)

Following ref 33, we consider the total timh@s an input. In _
this case, there is a constant Hamiltoniafy, which preserves ~ Which corresponds to the steepest descent path. However,

the stationary path. Mathematically, it is expressed as another limiting case of high temperatures gives
08y nksT 9 Q r & 2
= =0 J=TAl— [ d|1+-—U 30
3 N Z o @ (30)
At — _ gAs
S = fmx pdl — ﬁn At = fxs'b@ pol, = 7t (23) which is not simply a straight line as in the case of white forces.

It becomes a straight line only for smatl or very strong
Since the last term in eq 23 is path independent, the variation damping. However, we should be very careful with certain
of & is equivalent to the variation of the subacti® = physical conclusions here, because our initial construction of

fﬁg)pdls. Using the standard classical mechanics formula the Langevin equation assumes only r_noderate temperatures.
——— . Otherwise, we have to account for the time dependence of the
p = y2/(E-V(X)). the subaction can be represented as memory function in eq 1. An even more important restriction
for the temperature comes from the approximation done when
XP) 7/‘5)+ d uQ) 2 (24) obtainin_g eq 26. Following the authors of ref 33, we require
X0 Q the particle to be thermalized &= 0, but start to movexactly
from the minimum point, whereld/dQ = 0. Of course, this
The only yet undetermined quantity in our consideration is approximation is not good for high temperatures. Nevertheless,
7. To find this, we assume that the reactant state of the we can examine the memory effect on the system dynamics

system corresponds to its thermal equilibrium, so that=a0, under appropriate conditions. This is done in the next section
7 can be expressed as with the simple Hue-Straub potentiat?
V. Numerical Illustration
©_PO _(d 2_pi(0) nkTT” . . . .
A=~ 7 (dT;) U(Qr)) =2 m (25) We consider the optimal paths in the 2B £ 2) potential

with three minima, Figure 1, considered in refs 33 and 34:

where n is the number of degrees of freedoiks is the , , ,
Boltzmann constant, andl is the characteristic temperature.  U(x y) = —5e e * V' + e <] — 3g ¥[e 0 5F — g 013
Thus, using the simple analogy with classical mechanics of a (31)
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Figure 1. The “longer” (triangles) and “shorter” (squares) optimal paths

Zhukov et al.
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for the three-minima potential, eq 31. The potential is shown as a the transition from the “longer” to the “shorter” path as a function of

contour plot.

We discretize the action, eq 26, in space in the following
way 35

N
2 Jgisorete™ Alglo T Alyngalnes (Ali_g; + Al )l +

N
2y (Al — DI (32)

Aljj1 = (Q — Qi+1)2

~ oA TT? o8 d ) 2
= {—M (1 + f@iz U(Qi)) + (d_Q, U(Qi)) }

1 N
C=2 Y Al

(33)

The discretization is done on a grid Nf= 20 space point&);
= (X,yi), I = 1..N, plus the initial (Oth) and final [{ + 1)th]

the correlation timer/T.

“longer” path sharply disappears at some temperature. In the
absence of memory effects € 0), the transition temperature

is numerically found to correspond ktty = nksTel'%/M =~ 1.3040

+ 0.0002 (the temperature is expressed through an “effective
Hamiltonian” H = nkgTI'?/M, that appears in the expression
for the action eq 26).

We now inquire as to how the memory effect changes the
temperature at which the “longer” path disappears. Numerically
we determine that this transition temperature decreasesrwith
and this decrease can be very precisely fitted by a simple curve,

Ho

with the constant coefficie = 11.20+ 0.02 (see Figure 2).
This functional form can be explained simply in terms of the
effective temperature introduced by eq 28. Indeed, according
to eq 28, the presence of the nonzero memory term effectively
modifies the temperature of the system approximately*as

T(1 + #/T-d?U/dQ?), where dU/dQ? is just the Laplacian of
the potentialJ(Q) along the path. Namely, the memory effects

points, chosen to correspond to the two lowest minima of the lead to the local “heating” of the system in those parts of the

potential. The term proportional foin the action /giscreteCauses

path where the Laplacian of the potential is positivé(dQ?

different discretization intervals along the path to have equal > 0), i.e., near the minima, and on the other hand, the system
lengths, and it does not affect the value of the action if this is locally “cooled down” in the parts of the path where the

condition is satisfied exactly. The value #f= 100 is used
throughout.
The paths are optimized using the “downhill simplex”

Laplacian is negative, i.e., near the maxima of the reaction
potential.
In the case of a system with memonyX 0), it is this local

technique®® The optimization runs are stopped at points where effective temperaturé” (rather than the Langevin temperature

the relative changes of the actiofiscretedo nNot exceed 109,

T itself) that defines the criterion for the stability/instability of

and they are restarted several times to ensure the finala given path at a gived. (This also strongly affects the
convergence. Besides, in the separate control runs with twotransition rate, because it is now dependent on the new effective
generalizations of the above technique, involving simulated temperaturd”.) For example, wheffi is increased, the instability

annealing® and subspace searchifigye check that the results

of the “longer” path (Figure 1) starts from its middle part. It is

do not depend on the optimization details. The optimization this middle part that passes near/through the third, local
techniques used, though slower than the methods where theminimum of the reaction potential, where the Laplacian is found

knowledge of the gradient of the function being optimized is

to be a large positive value ofld/dQ? ~ 10. This should lead

required, have a clear advantage in that they permit a study ofto local heating of the system, according to eq 28.
the cases where the action depends on the coordinates in a very Thus, for a system with memory, in order to determine the

complicated manner.

As illustrated in Figure 1, there are two different optimal paths
joining the two lowest minima of the potential: the “longer”
path going through the third, “intermediate” minimum, and the
“shorter” direct one. For lower intervals of temperature, both

transition temperature for the disappearance of the “longer” path,
it is the increased local effective temperature of the middle part
of the pathT |7, 4qe = T(L + o/T'+(d?U/dQ?)migaie) that should be
equated to the “critical” valudy = HoM/nksI'?, as measured
for the case of zero memory,= 0. Hence, one obtains eq 34

paths are stable; however, as the temperature is increased, thith the coefficient8 ~ (d?U/dQ?)miqdie identified as the value
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mined directly from the path, is quite satisfactory. Let us note

here, that the local heating of the system near the initial and Appendix A: Langevin Dynamics

final points of the optimal path, i.e., near the two main minima Accurate numerical investigations of chemical reactions and,

where the Laplacian is also large positive, does not seem 10,510 generally, activation processes can be done by different
play any role in the stability of the path, possibly because these (g -niques. Probably the most straightforward one is a micro-

regions lie far from the most “sensitive” middle part of the path. scopically detailed molecular dynamics simulation. However,

In summary, the explanation of the stability of the path in for real systems it is often too time extensive and expensive.
terms of the effective local “heating/cooling” of the system due \joreover, such detailed simulations sometimes take into account
to memory effects seems reasonable, and, to the best of oufyegrees of freedom which are not important for the outcome
knowledge, this idea is also new. It would be interesting to p ¢ require a lot of resources to simulate them. For these cases,
further confirm the validity of this idea with more realistic  here are various theoretical techniques developed to reduce
models. unimportant degrees of freedom, or, roughly speaking, to

. integrate equations of motion over them.
VI. Conclusions The Langevin equation (and equivalently the Fokkkanck

The focus of our study is a chemical system which obeys €duation) is often used in a phenomenological approach, with
Langevin dynamics (eq 1) with colored random force (eq 2). the choice of a modc_al adiabatic pot_entlal _and a friction
Using the path integral technique, we construct conditional Parameter. However, it could be derived rigorously from
probability 9 for the system to pass successfully from the Microscopic Ham|Itqn|an equations that incorporate all the
reactant state to the product. Our formulas 9 and 10 do not degrees of freedom in the system. Probably, the most compre-
depend on the particular discretization of the equations of motion N€nsive approach to this problem can be done by the use of
and can be directly used for either the path sampling of non- Mori projection operator techniquéz:5+>4 The basic idea is
Markovian systems or direct evaluation of the reaction rates. {0 Separate the variables into two Hilbert subspaces, one for
Using variational principle 11, we give the differential eq 14 the slow degrees of freedom denoted here @yto be treated
for the most probable path (MPP) of reaction. However, in view €XPlicitly, and one for thefast degrees of freedom to be
of its complexity, we use our general relations 9 and 10 to integrated out. The particular choice of these subspaces depends
generalize recent calculatiGif the most probable path to N the nature of the system_under consideration. Ideally, the
the case when the inertial term is accounted for in the Langevin Procedure of degrees reduction must be done for each system
equation. By considering nonzero correlation time, we examine Under study individually. When we identify the corresponding
how important the memory effect is for MPP calculations, and Subspaces, we can define a projection operatoonto the

we demonstrate our results numerically with a three-hole Subspace of slow variables and the orthogonal projection
potential model (eq 31). operator? = 1 — ¢ By projecting out all the fast degrees of

freedom, we end up with a generalized Langevin equation of

Finally, we would note that our approach in principle can be .
y bp P P motion of the form

applied to any activation process, although would be mostly
used for processes where the memory effects are essential. In t

addition to the surface diffusion probletfr?? chemically MO(t) = _fz(t, YO(t')dt’ —%U(Q)'f‘l:(t) (A-1)
important examples of such processes incluge-fike reactions Yo

in water, which have been shown to involve considerable non- ) ) ) ) ) )
Markovian effect$839 These kind of reactions are of special WhereM is the effective mas$)(Q) is the adiabatic potential,
importance for studies of heavy-particle charge-transfer reactions@nd F(f) is the random force. The darpplng of slow degrees is
in solution%®-42 Another expected important application of the Ccharacterized by a memory functiat,t’) that usually depends
proposed framework is the interconversion process between ari? @ complicated manner on the past history of the system
ion pair and solvent® These types of processes play an evolut|o_n. Importantl_y, the memory fur_1ct|oE(t,t) and the
important role in a wide range of chemical and biological fluctuating forceF(t) in eq A-1 are not independent of each
problems, like macromolecular catalyéfshiochemical hy- other since they both arise from the coupling to the fast variables
drolysis rﬁechanisnrféf’ and protein stability6:47 subspace. These quantities are related by the fluctuation

Our approach also allows the investigation of noise-induced dissipation theoreff

rate processes between macroscopic systems states subject to
external noise, which experiments already are able to do quite
precisely!® Another notable advantage of the developed frame-
work is an account of the inertial term in the Langevin equation, The random forceF(t) is the component of the total force
which is important in situations where the evolution is not projected out of the subspace of slow degrees and generally
overdamped. This should be useful in the analysis of fast has a very complicated time dependence given by
processes, such as low-barrier isomerization dynaffi#’s. d
Of course, the above examples do not exhaust all the problems Ft) = —exp{ -1 272t a0 u@Q (A-3)
manifesting strong memory effects. The practical implementa-
tion of the proposed approach will be the goal of our future where/is the Liouville operator. Usually the correlator in eq
studies. A-2 is approximated in some manner. The simplest form of
memory function occurs in the Markovian limit, where the time
Acknowledgment. We would like to thank Maxim Paliy scale for the fast degrees of freedom is set to be zero. In this
for his kind help in numerical part of the work. Useful case, the memory function is approximated by a delta function,
communications with Stella Constas and Ray Kapral are and the first term on the right-hand side (RHS) of eq A-1

=) = o FOFGD (A-2)
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becomesI'Q, where I' is a constant. This is a common due to different representations of discrete forces. A thorough
approximation in treatments of chemical reactions. Less severeinvestigation of the problem of a unique form of discretization
approximations can be done in the manner similar to the Grote of a functional integral can be found in refs 59 and 60.
Hynes theor§?24to account for memory effects. In this case, Particularly, Schmié? has argued that the form C-3 is only

the first term on the RHS of eq A-1 is approximatedIyb- appropriate for the path integral used in the probabilistic sense
Q(t), whereT'(t) is the matrix of time-dependent damping because of a requirement of zero path fluctuations at the terminal
coefficients. point. Meanwhile, we use expression C-3, but will come back
to this point later.
Appendix B: Probability Density Function The Jacobian eq 7 can now be calculated in a straightforward
All the matrices involved in the Langevin eq 1 are assumed W& @S

diagonal, which allows us to work with them similarly to one- oF, OF, oF,
dimensional equations. We assume the random f6(teio be {;_% 2_% %

2 2 2

Gaussian with zero mean. Since the process is defined over ansr

infinite time interval, it is convenient to work with the Fourier oo~ %% ‘;S: g‘éz 32:1 " =dev
transform of the correlator defined in eq 2, 70, 50, 0,
F(w)F(w") = 27DK(w1)d(w — ') (B-1)
T'A
where (1 ) O 0 0
(42U _2M M TAt
. 5 de n Kt(1+m) 0 0
K(wt) = f dsK(s) expiwts) + c.c.= — (B-2)
0 1+ ot M(l_H) AdU Mm M(H_@) 0 e (M TAt\n
A" 2m dQz AU A 2M _(Kt) (l+m)N~'w
If the probability density functional is Gaussian, then using |, M(l FAt) adU_2m M(H@)
[F(w)O= 0 and eq B-1, we can writé At am) Tagp AU At }
PLE®} O exp[ > f —F( WK (a)r)F(cu)} (C-5)
The main consequence of our calculations is a coordinate
=exp[ 2 E(— w)(l-l—wzrz)F(w)} independence of the Jacobian eq C-5. However, it can be
4D 2” checked easily that this Jacobian would be coordinate dependent

1 po . if we use another discretization of the forces (eq C-4). Although
- eXp[ 4D J-w dtF(O(F() — r2':(0)} we believe this latter expression is not appropriate in our case,
1 it will not be discussed here in detail because it is not crucial
= exp[ -/ dt(FZ(t) + rZFZ(t))} (B-3) in this approach. Indeed, using the discretization C-4, we obtain
the term coming from the potential that is of next order\in
which is consistent with eq 3 in the main text. In contrast with the overdamped case investigated in ref 33,
this leads to a vanishing contribution to the action in the
Appendix C: Calculation of the Jacobian, Eq 7 continuous path limit where, wheft — 0. We note here that

the final result for the Jacobian becomes divergent wher-

0, so that the question of final limit of path integral arises. This
problem can be removed by a proper normalization of the
integral in the continuum limit. We do not address this question
At=tN=t -t ;j=1..,Mt,=0 (C-1) in detail, since we are interested in thedative contributions

of different path realizations.

In calculating the Jacobian in eq 7, we have to resort to a
limiting process that starts with a representation in discrete time
steps. Specifically, we may choose

Further, we can pu@; = Q(t;) and
Appendix D: Fokker—Planck Equation
L]
_ To construct the FokkerPlanck equation (FPE) for the
F=/[d C-2 :
! f SHE) (C-2) system governed by egs 1 and 2, let us start with the exact

master equatioft,

-1

Carrying through this procedure in detail, we arrive at a recursive e O I
relation of the form T =7 [0(QM) — Qu(t) — )0 (D-1)
F= Xlt Q-2Q,+Q)+35 (Q Qo) + At——— dQ U(Q-1) which, after some algebra, can be represented as
j—1
3 ar{Q} | ar{Q)} | dUQ a{QM) |
We have to emphasize here that eq C-3 is a result of direct 3Q dQ 3” t—t] Q
recursion construction which has, however, some “degrees of F— (b P{Q)}) + —=— { dt' exg— ; Q) —
freedom,” particularly in the last form. For example, Grahéath dv a% ()f F{ )
used the following form: _ 290 t
1 QO = ) 5F { Jo ot
- t—t
{ U(Q) + o V@Q- 1)} (C-4) exp(—%)B(Q(t)—Q)(v(t) mﬂ (D-2)

This form of discretization was also considered in ref 33, where The angular brackets stand for the ensemble average, which
it has been shown that the discrepancy between final results iscan be done by the path integration,
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0.0= f DFQ)...P{F(0)}

and 0Q(t)/oF(t") and du(t)/0F(t') are the corresponding func-
tional derivatives. In fact, eq D-2 gives us nothing useful in

comparison with the general relation (eq D-1), but it becomes

meaningful if we work along the most probable p&tx(t),vs
()}, which is the solution of eq 14. In this case, the functional
derivatives in eq D-2 can be taken out of the path integrals,

and the remaining integration gives us precisely the probability

density 2{Qq(t)}. Going through this procedure, we come to
the generalized FokkeiPlanck equation

02{Q0} a2{Qn)} N du(Qy a2{Qt)} N
a 9Q, dQs dvg

ro- (UJ {QON) + =51 DQ(QS) Q0 +

w, 3Q
ﬁ {D(Q){Q1}} (D-3)

where the generalized diffusion coefficients are defined as

Qs(t) —t
Do) =7 [yt somex{- 1) ©4)
D/Q) = 6F((J) F(— : ~ t") (D-5)

Appendix E: Derivation and Analysis of Eq 15
After straightforward algebra, eq 6 can be reorganized as

Q)] = SIQM] + 2I'J; + 2MJ, + 7°J; + 2MeJ, + 2'zJ

(E-1)

whereS[Q(t)] is given by eq 16, and; are the integrals to be

J. Phys. Chem. A, Vol. 112, No. 13, 2008301

The first terms in both integrals turn out to be zero because of
the conditionU’ = 0 at the initial and final states. However the
last terms are path dependent and generally do contribute to
the total action. Thus we come to formula 15 in the main body
of the text.
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